Toward biomass-derived renewable plastics: Production of 2,5-furandicarboxylic acid from fructose
نویسندگان
چکیده
We report a process for converting fructose, at a high concentration (15 weight %), to 2,5-furandicarboxylic acid (FDCA), a monomer used in the production of polyethylene furanoate, a renewable plastic. In our process, fructose is dehydrated to hydroxymethylfurfural (HMF) at high yields (70%) using a γ-valerolactone (GVL)/H2O solvent system. HMF is subsequently oxidized to FDCA over a Pt/C catalyst with 93% yield. The advantage of our system is the higher solubility of FDCA in GVL/H2O, which allows oxidation at high concentrations using a heterogeneous catalyst that eliminates the need for a homogeneous base. In addition, FDCA can be separated from the GVL/H2O solvent system by crystallization to obtain >99% pure FDCA. Our process eliminates the use of corrosive acids, because FDCA is an effective catalyst for fructose dehydration, leading to improved economic and environmental impact of the process. Our techno-economic model indicates that the overall process is economically competitive with current terephthalic acid processes.
منابع مشابه
Self-sustained enzymatic cascade for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural
Background 2,5-Furandicarboxylic acid is a renewable building block for the production of polyfurandicarboxylates, which are biodegradable polyesters expected to substitute their classical counterparts derived from fossil resources. It may be produced from bio-based 5-hydroxymethylfurfural or 5-methoxymethylfurfural, both obtained by the acidic dehydration of biomass-derived fructose. 5-Methoxy...
متن کاملPhase modifiers promote efficient production of hydroxymethylfurfural from fructose.
Furan derivatives obtained from renewable biomass resources have the potential to serve as substitutes for the petroleum-based building blocks that are currently used in the production of plastics and fine chemicals. We developed a process for the selective dehydration of fructose to 5-hydroxymethylfurfural (HMF) that operates at high fructose concentrations (10 to 50 weight %), achieves high y...
متن کاملSynthesis of Furandicarboxylic Acid Esters From Nonfood Feedstocks Without Concomitant Levulinic Acid Formation
5-Hydroxymethylfurfural (HMF) is a versatile intermediate in biomass conversion pathways. However, the notoriously unstable nature of HMF imposes challenges to design selective routes to chemicals such as furan-2,5-dicarboxylic acid (FDCA). Here, a new strategy for obtaining furans is presented, bypassing the formation of the unstable HMF. Instead of starting with glucose/fructose and thus form...
متن کاملMulti‐site Cooperativity in Alkali‐Metal‐Exchanged Faujasites for the Production of Biomass‐Derived Aromatics
The catalytic Diels-Alder cycloaddition-dehydration (DACD) reaction of furanics with ethylene is a promising route to bio-derived aromatics. The reaction can be catalyzed by alkali-metal-exchanged faujasites. Herein, the results of periodic DFT calculations based on accurate structural models of alkali-metal-exchanged zeolites are presented, revealing the fundamental roles that confinement and ...
متن کاملNew bio-based monomers: tuneable polyester properties using branched diols from biomass.
A family of monomers, including 2,5-hexandiol, 2,7-octandiol, 2,5-furandicarboxylic acid (FDCA), terephthalic acid (TA), and branched-chain adipic and pimelic acid derivatives, all find a common derivation in the biomass-derived platform molecule 5-(chloromethyl)furfural (CMF). The diol monomers, previously little known to polymer chemistry, have been combined with FDCA and TA derivatives to pr...
متن کامل